the diprerential game of evasion in a plane

PMM Vol. 41, №4, 1977, pp. 604-608
V.S. PATSKO
(Sverdlovsk)
(Received December 21, 1976)

Necessary and sufficient conditions of point avoidance in a strictly linear differential game in a plane are presented. This paper is related to [1-4].

1. Let the motion of a conflict - controlled system in the Euclidean plane X be defined by the differential equation

$$
\begin{equation*}
d x / d t=A x+f(u, v) \tag{1.1}
\end{equation*}
$$

where x is a two-dimensional phase vector , A is a constant 2×2 matrix, f is a continuous function with values in X and specified in compactum G belonging to the product $X_{u} \times X_{v}$ of finite-dimensional Euclidean spaces. The selection of controls u and v is effected by the first and second player, respectively.

We denote by $P(Q)$ the orthogonal projection of G on $X_{u}\left(X_{v}\right)$, and set $P(v)$ $=\{u \in P:(u, v) \in G\}, v \in Q(Q(u)=\{v \in Q:(u, v) \in G\}, u \in P)$. We assume that $P(v)(Q(u))$ depends on $v(u)$ in the sense of Hausdorff's metric.

Let $\mathbf{U}(\mathbf{V})$ be the set of strategies of the first (second) player, namely set of all functions determined in $R_{+} \times X$ with values in $P(Q)$, where R_{+}is a set of positive numbers and the vinculum denotes closure. We denote by $\mathbf{U}^{v}\left(V^{u}\right)$ the set of all functions measurable in t for any $v \in Q(u \in P)$, which associate to every vector
$(t, v)((t, u))$ in $R_{+} \times Q\left(R_{+} \times P\right)$ a vector in $P(v)(Q(u))$.
Let Δ be an arbitrary subdivision of the semiaxis R_{+}by points $0=t_{1}<t_{2}<$ $\ldots, \lim t_{i}=\infty$ when $i \rightarrow \infty$. We denote by $d(\Delta)$ the diameter of subdivision Δ i. e. $\sup \left\{\left|t_{i+1}-t_{i}\right|: i=1,2, \ldots\right\}$, and for fixed $\Delta, y \in X$, $U \in \mathbf{U}(\mathbf{V} \in \mathbf{V})$, and $V^{u} \in \mathbf{V}^{u}\left(U^{v} \in \mathbf{U}^{v}\right)$ we use symbol $x\left(\cdot ; \Delta, y, U, V^{u}\right)$ ($x\left(\cdot ; \Delta, y, U^{v}, V\right)$) for denoting an absolutely continuous function specified in R_{+} with values in X, equal y at $t=0$, and in every half-open interval $t_{i} \leqslant t<$ $t_{i+1}, i=1,2, \ldots$ of subdivision Δ is the solution of the differential equation

$$
\begin{aligned}
& d x / d t-A x+f\left(U\left(t_{i}, x\left(t_{i}\right)\right), \quad V^{u}\left(t, U\left(t_{i}, x\left(t_{i}\right)\right)\right)\right. \\
& \left(d x / d t=A x+f\left(U^{o}\left(t, V\left(t_{i}, x\left(t_{i}\right)\right), V\left(t_{i}, x\left(t_{i}\right)\right)\right)\right)\right.
\end{aligned}
$$

Let m denote the coordinate origin and $O(\varepsilon, x)$ denote the ε-neighborhood of point $x \in X$. We introduce sets B_{1} and B_{2}.

The set B_{1} is the totality of all points $y \in X$ for each of which it is possible to select a strategy $U \in \mathrm{U}$, instant $\theta \geqslant 0$, and the mapping $\varepsilon \rightarrow \delta(\varepsilon)$ from R_{+} into R_{+}so that for any $\varepsilon>0$ the subdivision Δ of diameter $d(\Delta) \leqslant \delta(\varepsilon)$ and function $V^{u} \in \mathbf{V}^{u}$ at some $t \in[0, \Theta]$ the inclusion $x\left(t ; \Delta, y, U, V^{u}\right) \Subset O(\varepsilon, m)$ is satisfied.

The set B_{2} is the totality of all points $y \in X$ for each of which it is possible to
select a strategy $V \in \mathrm{~V}$ and mapping of $\Theta \rightarrow \varepsilon(\Theta)$ and $\Theta \rightarrow \delta(\Theta)$ from R_{+}into R_{+}so that for any $\Theta>0$ the subdivision Δ of diameter $d(\Delta) \leqslant \delta(\varepsilon)$ and function $U^{v} \in \mathrm{U}^{v}$ the inclusion $x\left(t ; \Delta, y, U^{v}, V\right) \in X \backslash O(\varepsilon, m)$ is satisfied for any $t \in[0, \Theta]$.

In other words the set $B_{1}\left(B_{2}\right)$ is the totality of all initial points y in plane X for each of which there exists a method of action of the first (second) player that makes it possible for him to bring system (1.1) fairly close to the terminal point m (makes it possible to prevent system (1.1) from reaching point m in any finite time) for any actions of the second (first) player.

Below we present the necessary and sufficient conditions for $\quad B_{1} \neq\{m\}\left(B_{2}=\right.$ $X \backslash\{m\}$).
2. We denote by Γ the set of all functions that associate to every vector u in P a vector in $Q(u)$. Let

$$
\begin{aligned}
& H_{1}(x, \gamma)=\mathrm{co} \bigcup_{u \in P}[-A x-f(u, \gamma(u))], \quad x \in X, \quad \gamma \in \Gamma \\
& H_{2}(x, v)=\mathrm{co} \bigcup_{u \in P(v)}[-A x-f(u, v)], \quad x \in X, \quad v \in Q
\end{aligned}
$$

where $\operatorname{co} D$ is the closed convex envelope of set D. For any arbitrary convex closed set $D \subset X$ we assume

$$
\begin{aligned}
& \Lambda(D)=\{x: x=\lambda z, \quad z \in D, \quad \lambda>0\} \\
& D^{\circ}=\bar{\Lambda}(D) \cap\{x:|x|=1\}
\end{aligned}
$$

Assuming everywhere below $\xi=1,2$, we denote $W_{\xi}=\Gamma$ for $\xi=1$ and W_{ξ} $=Q$ when $\xi=2$. Let for any $x \in X$

$$
\begin{equation*}
K_{\varepsilon}(x)=\bigcap_{w \in W_{\xi_{\xi}}} H_{\xi}^{\circ}(x, w) \tag{2,1}
\end{equation*}
$$

$L_{F}(x)=K_{\xi}(x)$, if $K_{\vec{\zeta}}(x) \neq \varnothing$ and consists of a single element; in the opposite case $L_{\xi}(x)=\varnothing$.

Assumption 1. If $K_{\bar{G}}(m) \neq \varnothing$ and consists of one or two elements, then

$$
\operatorname{linf}_{p, w} \max \left\{\lambda \geqslant 0: \lambda p \in H_{\xi}(m, w)\right\}>0
$$

where the exact lower bound is taken over all $p \in K_{\xi}(m), w \in W_{\xi}$.
Before formulating the second assumption, we introduce the following concepts. For $L_{\xi}(m) \neq \varnothing$ we set $F_{\xi}=\left\{x: x=\lambda L_{\xi}(m), \quad \lambda \in R\right\} \quad$ where R is a set of real numbers. When the straight line F_{ξ} is not invariant with respect to linear transformation defined by matrix A, then we assume that p_{ξ} is a unit vector that satisfies conditions $p_{\xi} L_{\xi}(m)=0$ and $p_{\xi} A L_{\xi}(m)>0$ where the prime indicates transposition. For any $c>0$ wc assume that

$$
\begin{aligned}
& J_{\xi}{ }^{1, c}=\left\{l \in X: l^{\prime} p_{\xi} \geqslant 0, \quad c\left|l_{\|}\right| \geqslant l^{\prime} L_{\xi}(m) \geqslant 0\right\}, \\
& J_{\underset{\tau}{2, c}}=-J_{\xi}^{1, c}
\end{aligned}
$$

and for any $l \in X$

$$
S_{\mathbf{1}}(l)=\max _{u \in P} \min _{v \in Q(u)} l^{\prime} f(u, v), \quad S_{2}(l)=\min _{v \in Q} \max _{u \in P(v)} l^{\prime} f(u, v)
$$

Assumption 2. If $L_{\xi}(m) \neq \varnothing$ and the straight line F_{ξ} are not invariant, there exists such $\alpha>0$ for which function S_{ξ} is either convex in each of the sets $J_{\bar{\xi}}{ }^{1, \alpha}$ and $J_{\xi}^{2, \alpha}$ or is concave on each of these sets.

We set $E_{1}=B_{1}$ and $E_{2}=X \backslash B_{2}$.
Theorem. Let Assumptions 1 and 2 be satisfied. For $E_{\xi} \neq\{m\}$ it is necessary and sufficient if one of the following two conditions is satisfied:

1) $K_{\xi}(m) \neq \varnothing, L_{\xi}(m)=\varnothing$,
2) $L_{\xi}(m) \neq \varnothing$ and there exist a $x>0$ such that $K_{\xi}(x) \neq \varnothing$ for any $x \in$ $\Lambda\left(L_{\xi}(m)\right) \cap O(x, m)$.

Notes. 1°. An equivalent definition of the set $K_{\xi}(x)$, introduced by formula (2.1) can be derived as follows. Let $v_{\xi}(x)$ be the totality of all unit vectors l such that $S_{\xi}(l)+i A x \leqslant 0$. Then

$$
K_{\bar{\xi}}(x)=\bigcap_{l \in v_{\xi}(x)}\left\{z:|z|=1, l^{\prime} z \geq 0\right\}
$$

if $v_{\zeta}(x) \neq \varnothing$, and $K_{\xi}(x)=\{z:|z|=1\}$ when $v_{\xi}(x)=\varnothing$.
2°. If for any $l \in X$

$$
\begin{equation*}
S_{1}(l)=S_{2}(l) \tag{2.2}
\end{equation*}
$$

(i. e. the condition of saddle point is satisfied in the small game [1]), then $K_{1}(x)=$ $K_{2}(x)$ for any $x \equiv X$. When (2.2) holds and the set $K_{1}(m)=K_{2}(m)$ consists of one or two elements, the fulfilment of Assumption 1 for $\xi=1$ entails its fulfilment for $\xi=$ 2 and vice versa.
3°. Assumption 1 is satisfied if, for instance ,

$$
\begin{equation*}
f(u, v)=u-v, \quad G=P \times Q, \quad P \subset X, \quad Q \subset X i \tag{2.3}
\end{equation*}
$$

and the set co P is a polygon. Assumption 2 is satisfied if, for instance, at least one of sets co P or co Q is a polygon.
3. Let us outline the proof of the theorem. Let $K_{\xi}(x) \neq \varnothing$ for some $x \in X$ and $r_{\varepsilon}(x)$ be some arbitrary vector in $K_{\xi}(x)$. We set

$$
\eta\left(x, r_{\xi}(x)\right)=\inf _{w \in W_{\xi}} \max \left\{\lambda \geqslant 0: \lambda r_{\xi}(x) \in H_{\xi}(x, w)\right\}
$$

We denote by Π that of the two closed half-planes determined by the straight line $\left\{x: A x \in F_{\xi}\right\}$ whereinto is directed vector $L_{\xi}(m)$, when $L_{\xi}(m) \neq \varnothing$ and the straight line F_{ξ} is not invariant. We assume that II $(c)=O(c, m) \cap \Pi, c>0$. The following lemma is valid.

Lemma 1. If $L_{\xi}(m) \neq \varnothing, F_{\xi}$ not invariant, and the Assumptions 1 and 2 are satisfied, then, either a) there exist a $x>0$ and function q_{ξ} that satisfies the Lipschitz condition and is determined in $O(x, m)$ with values in X°, such that $K_{E}(x)$ $\neq \varnothing$ and $q_{\xi}(x) \in K_{\xi}(x)$ for any $x \in \Pi(x)$ and $\inf \left\{\eta\left(x, q_{\xi}(x)\right): x \in \Pi(x)\right\}$ >0, or b) there exist such $x>0$ and functions h_{ξ} and ψ_{ξ} that satisfy the Lipschitz condition and are determined in $O(x, m)$ with values in $J_{\xi}^{o_{1}, \alpha}$ and R_{+}, respectively, such that

$$
\begin{aligned}
& \max _{w \in W_{\xi}} \min \left\{(-1)^{i} h_{\xi}^{\prime}(x) y: \quad y \in H_{\xi}(x, w)\right\} \geqslant \psi_{\xi}(x) \\
& i=1,2 ; \quad x \in \Pi(x) \\
& h_{\xi}(x) \neq p_{\xi}, \quad \psi_{\xi}(x)>0, \quad x \in \Pi(x) \backslash F_{\xi} \\
& h_{\xi}(x)=p_{\xi}, \quad \psi_{\xi}(x)=0, \quad x \in \Pi(x) \cap F_{\xi}
\end{aligned}
$$

Depending on the particular form of system (1.1) and the fulfilment of Assump tions 1 and 2 only one of the following five cases is possible:

1) $K_{\xi}(m) \neq \varnothing, \quad L_{\bar{E}}(m)=\varnothing$;
2) $L_{\mathrm{E}}(m) \neq \varnothing, F_{\mathrm{g}}$ is invariant;
3) $L_{\xi}(m) \neq \varnothing, F_{\xi}$ is not invariant and statement a) of Lemma 1 is satisfied;
4) $L_{\xi}(m) \neq \varnothing, F_{\xi}$ is not invariant and statement b) of Lemma 1 is satisfied, and
5) $K_{\xi}(m)=\varnothing$.

Lemma 2. If assumptions 1 and 2 are satisfied, then $E_{\xi} \neq\{m\}$ in cases 1-3,

Fig. 1 and $E_{\xi}=\{m\}$ in cases 4 and 5.

The theorem follows from Lemma 2 if one takes into consideration the following observations:
statement a) of Lemma 1 implies the fulfilment of condition 2) of the theorem;
if statement b) of Lemma 1 is valid condition 2) of the theorem is not satisfied; condition 2) of the theorem is satisfied, when $L_{\xi}(m) \neq \varnothing$ and the straight line F_{ξ} is invariant.
4. Examples. Let function f and set G be of the form (2.3). If the sets p and Q are such as shown in Figs. 1 and 2, $K_{1}(m)=K_{2}(m)=\varnothing$, hence for any matrix A we have, according to the theorem, $B_{1}=\{m\}, B_{2}=X \backslash\{m\}$. Now, let the sets P and Q be such as shown in Fig. 3, then $L_{1}(m)=L_{2}(m)=\left\{l: l_{1}=1\right.$, $l_{2}=0$. If

$$
A=\left\|\begin{array}{rr}
0 & 0 \\
-1 & 0
\end{array}\right\| \quad\left(A=\left\|\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right\|\right)
$$

then there exists such $x>0$ that $K_{1}(x)=K_{2}(x)=\varnothing\left(K_{1}(x)=K_{2}(x) \neq \varnothing\right)$ for any $x \in\left\{z: 0<z_{1}<x, z_{2}=0\right\}$. Hence $B_{1}=\{m\}, B_{2}=X \backslash\{m\}\left(B_{1} \neq\{m\}, B_{2} \neq\right.$ $X \backslash\{m\}$).

Fig. 2

Fig. 3

REFERENCES

1. Krasovskii, N. N. and Subbotin, A. I., Positional Differential Games. Moscow, "Nauka", 1974.
2. Pontriagin, L. S., Linear differential game of evasion. Tr. Matem. Inst. Akad. Nauk SSSR, Vol. 112, Moscow, "Nauka", 1971.
3. Pshenichnyi, B.N. and Chikrii, A. A., The problem of encounter evasion in differential games. (English translation) Pergamon Press, Zh. Vychisl. Mat. mat. Fiz. . Vol. 14, №6, 1974.
4. Patsko, V.S. Point evasion conditions in a second-order differential game. PMM, Vol. 36, №6, 1972.
