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Necessary and sufficient conditions of point avoidance in a strictly linear 
differential game in a plane are presented. This paper is related to [l - 41. 

1. Let the motion of a conflict - controlled system in the Euclidean plane X be 
defined by the differential equation 

ax/at = Aa: + f (u, v) (1.1) 

where 2 is a two - dimensional phase vector , A is a constant 2 X 2 matrix, f 
is a continuous function with values in X and specified in compactum G belonging to 
the product X, X X, of finite - dimensional Euclidean spaces. The selection of con- 
trols u and v is effected by the first and second player , respectively. 

We denote by P (Q) th e orthogonal projection of G on X, (X,)., and set P (v) 

= {u E P : (u, v) E G}, v E Q (Q b) = {v E Q : (u, v) E G), u E P). 
We assume that P (v) (Q (u)) depends on v (u) in the sense of Hausdorff s metric, 

Let U (V) be the set of strategies of the first (second) player, namely set of all 
functions determined in R, X X with values in P (Q) , where R, is a set of posi- 
tive numbers and the vinculum denotes closure. We denote by IJ” (VU) the set of all 
functions measurable in t for any v E Q (u E p) , which associate to every vector 

(t, v) ((t, u)) in R, X Q (I?, x P) a vector in P (v) (Q (u)). 
Let A be an arbitrary subdivision of the semiaxis R, by points 0 = f, ( t, ( 

. . . ) lim ti = 00 when i-too. We denote by d (A) the diameter of subdivi- 

sion A i.e. sup {I ti+l - ti 1 : i = 1, 2 ,. . .) , and for fixed A, Y E X, 
U E U (V E V), and J’” e Vu ( uD E U”) we use symbol 5 (* ; A, Y, u, Vu) 
(X (. ; A, Y, U”, V)) for denoting an absolutely continuous function specified in R, 

with values in X, equal y at t = 0 , and in every half- open interval ti < t < 

ti+17 i = 1,2 ,. . . of subdivision A is the solution of the differential equation 

hldt = AZ f f (U (ti, X (ti)), Tr” (t, U (try z (ti))) 

(dxldt = AX + f (r (t, V (ti, 3 (ti)), V (ti, 1~ (ti)))) 

Let m denote the coordinate origin and 0 (E, x) denote the E -neighborhood of 
point x E X. We introduce sets B, and B,. 

The set Br is the totality of all points y E X for each of which it is possible to 
select a strategy U E U, instant 8 > 0 , and the mapping E + 6 (E) from R, 
into R, so that for any E > Cl the subdivision A of diameter d (A) \< 6 (E) and 
function Tr-l E v” at some t E [O, Q] the inclusion x (t; A, y, U, V)E 0 (8, m) 
is satisfied. 

The set B, is the totality of all points y E X for each of which it is possible to 
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select a strategy T’ E V and mapping of 0 -+ E (0) and 8 --f 6 (0) from R, into 
R, so that for any 0 > 9 the subdivision A of diameter d (A) < 6 (8) and function 

u” E TJ” the inclusion cz (t; A, y, u”, V) E X \ 0 (8, m) is satisfied for any 

t E [O, @I l 
In other words the set B, (B,) is the totality of all initial points y in plane X 

for each of which there exists a method of action of the first (second) player that makes 

it possible for him to bring system (1.1) fairly close to the terminal point m (makes it 
possible to prevent system (1.1) from reaching point m in any finite time) for any 
actions of the second (first) player. 

Below we present the necessary and sufficient conditions for 4 # {ml (& = 

X \ 14). 

2 . We denote by I’ the set of all functions that associate to every vector u in P 
a vector in Q (u). Let 

HI@, r>== cou&--+f(u, Y(U))17 rEX, YET 

Ha (X:, u) = co UEq(v)I- AX - f (u, u)l, 2 E x, n E Q 

where CO D is the closed convex envelope of set D. For any arbitrary convex closed 

set D c X we assume 

A(D) = 1 x : x = hz, ZED, QO) 
D” = h (D) 0 {XT : 1 II: ) = 2) 

Assuming everywhere below E = 1, 2, we denote WC = I? for E = 1 and WE 
= Q when E = 2. Let for any x E X 

KE(“) = flwi H,“(.c, w) (2.1) 

LF (xj = Ke (z> * if K,: (x) # @ and consists of a single element; in the oppo- 

site case Le (2) = Qj . 

Assumption 1. If Ke (m) # 0 and consists of one or two elements, 

then 
linf max {h >, 0 : hp E HE (m, to)}‘> 0 
ZJs 20 

where the exact lower bound is taken over all p E Kc (m), w E WE. 

Before formulating the second assumption , we introduce the following concepts. 

For LE (m) # 63 weset F~=={x:x=hLg(m), AERR) where R is a 

set of real numbers. When the straight line F4 is not invariant with respect to linear 
transformation defined by matrix A, then we assume that pe is a unit vector that sa- 
tisfies conditions pi Le (m) = 0 and pi ALE (m) > 0 where the prime indicates 
transposition. For any c > 0 we assume that 

J$” = {I E x : l’pe > 0, c ) Z,l > Z’Lk (4 > 01, 

J$.C z - JELc 

and for any 1 E X 

S,(Z) = max min af(u, u), S,(Z) = min max E’f (u, v) 
UEP UEQ(U) VGQ u~P(a) 
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Ass u m p t ion 2. If Lc (m> -# 0 and the straight line F, are not invariant, 
there exists such CL > 0 for which function 8, is either convex in each of the setaJE**a 
and Jc‘+ or is concave on each of these sets. 

We set E, = B, and E, = X \ B,. 

Theorem, Let Assumptions 1 and 2 be satisfied. For EF f {m} it is necessa- 
ry and sufficient if one of the following two conditions is satisfied: 

1) 4 (m> # 0, LE (ml = 0 8 
2) k b) # 0 and there exist a X > 0 such that & (z) # 0 for any x E 

A (JQ (m)) f-l O 6% m). 
Notes. 1”. An e~ivalent de~ni~ion of the set ~~(~j, introduced by formula 

(2.1) can be derived as follows. Let vE (2) be the totality of all unit vectors I such 

that SF (1) + I AZ < o. Then 

if “E (4 + 0, and Kt (2) = $2: 1 z 1 = 1) when vC (zf = 0. 
2”. If for any 1 E X 

8, (4 = & /4 (2.2) 

(i. e, the condition of saddle point is satisfied in the small game [ l]), then rSr, &) = 

K, (z) for any z E X, When (2.2) holds and the set X1 fm) = K, (m) consists of one 

or two elements, the fulfilment of Assumption 1 for +1 entails its ftrlfilment for E = 
2 and vice versa, 

and 

sets 

and 

3”. Assumption 1 is satisfied if, for instance , 

f (u, v) = It - u, G=PxQ, PCX, QcXi (2.3) 

the set co P is a polygon. Assumption 2 is satisfied if, for instance, at least one of 

co P or co Q is a polygon. 

9. Let us outline the proof of the theorem. Let & (z) f 0 for some ZE X 

r~ (5) be some arbitrary vector in Kc (z). We set 

q (2, r, (5)) = w$dgmax {h > 0: hr~ (4 E HE (z, w)} 

We denote by n that of the two closed half- planes determined by the straight 
line (8: As E PC} whereinto is directed vector & (m) , when LE (m) # 0 and the 

straight line FE is not invariant. We assume that 11 (c) = 0 (c, m) f-l II, c > 0. 
The following lemma is valid. 

Lemma 1. If ~5, (m} f: 0, FE not invariant, and the Assumptions 1 and 2 

are satisfied, then, either a) there exist a x > 0 and function Qr, that satisfies the 
Lipschitz condition and is determined in 0 (x, m) with values in X”, such that KE (9 
# a and 4~ (d E & (z> for any x E II (x) and id {q (x, qe (2)) : z EII (x)) 
> 0 , or b) there exist such 3~ > 0 and functions fir,. and ‘tp-C that satisfy the 

Lipschitz condition and are determined inO(x, m)with values in JEpi*= and fl,, respec- 
tively, such that 
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max min I(- l)i h,’ (5) y: 
WEWj 

y E HE (x, 20)) > 9~ fx) 

i = 1, 2; 5 E II (x) 
k (4 # Pe7 4% (4 > f-4 2 E IJ (4 \ h 
he (4 = PEA $5 (4 = 0, 5 E l-I (x) (--I F, 

Depending on the particular form of system (1.1) and the futfilment of Assump - 
tions 1 and 2 only one of the following five cases is possible: 

1) EC fm) + $9, -& (m> = 0; 
2) LE (m) # Qj, FE is invariant; 

3) Jk(W#0, Fe is not invariant and statement a) of Lemma 1 is satisfied ; 

4) L, W # @, F 4 is not invariant and statement b) of Lemma I.issatisfied, and 

5) Wm) = 0. 

Lemma 2. If assumptions 1 and 2 are satisfied t then EE += {m} in cases 1-3, 

, x2 and Et = {m} in cases 4 and 5. 

P 

I~ 

The theorem follows from Lemma 2 if 
one takes into consideration the following 
observations : 

statement a) of Lemma 1 implies the 
fulfilment of condition 2) of the theorem: 

a if statement b) of Lemma I is valid con- 
dition 2) of the theorem is not satisfied; 

condition 2) of the theorem is satisfied, 
when L, (m) # 0 and the straight line 

“I FE is invariant. 
Fig. 1 

4. Examples. Let function f and set G be of the form (2.3). If the sets P 
and Q are such as shown in Figs. 1 and 2, K1 (m) = KS (m) = $3 , hence for any 
matrix A we have, according to the theorem, 3, ={m),B, = X\{m)_Now, let 
the sets P and Q be such as shown in Fig. 3 I then L, (m) = Lz (m) = (1 : 1, = 1, 

62 = 0). If 

then there exists such 3t > 0 that xl (*) I= & (2) = 0 WI (4 = & (4 J: 0) for any 
se~{(z:O <zl <x, zz =O). HenceB, =(mj, 3, =X \(m}(B1#fm},B,# 

X \ {ml). 

x f-- 
Fig. 2 Fig. 3 
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