THE DIFFERENTIAL GAME OF EVASION IN A PLANE

PMM Vol. 41, №4, 1977, pp. 604-608 V.S. PATSKO (Sverdlovsk) (Received December 21, 1976)

Necessary and sufficient conditions of point avoidance in a strictly linear differential game in a plane are presented. This paper is related to [1-4].

1. Let the motion of a conflict - controlled system in the Euclidean plane X be defined by the differential equation

$$dx/dt = Ax + f(u, v)$$
 (1.1)

where x is a two-dimensional phase vector, A is a constant 2×2 matrix, f is a continuous function with values in X and specified in compactum G belonging to the product $X_u \times X_v$ of finite-dimensional Euclidean spaces. The selection of controls u and v is effected by the first and second player, respectively.

We denote by P(Q) the orthogonal projection of G on $X_u(X_v)$, and set $P(v) = \{u \in P : (u, v) \in G\}, v \in Q(Q(u) = \{v \in Q : (u, v) \in G\}, u \in P)$. We assume that P(v)(Q(u)) depends on v(u) in the sense of Hausdorff's metric.

Let U (V) be the set of strategies of the first (second) player, namely set of all functions determined in $R_+ \times X$ with values in P(Q), where R_+ is a set of positive numbers and the vinculum denotes closure. We denote by $U^{v}(V^{u})$ the set of all functions measurable in t for any $v \in Q$ ($u \in P$), which associate to every vector

(t, v) ((t, u)) in $R_+ \times Q (R_+ \times P)$ a vector in P(v) (Q(u)).

Let Δ be an arbitrary subdivision of the semiaxis R_+ by points $0 = t_1 < t_2 < \ldots$, $\lim t_i = \infty$ when $i \to \infty$. We denote by $d(\Delta)$ the diameter of subdivision Δ i.e. $\sup \{|t_{i+1} - t_i| : i = 1, 2, \ldots\}$, and for fixed Δ , $y \in X$, $U \in \mathbf{U}$ ($\mathbf{V} \in \mathbf{V}$), and $V^u \in \mathbf{V}^u$ ($U^v \in \mathbf{U}^v$) we use symbol $x(\cdot; \Delta, y, U, V^u)$ ($x(\cdot; \Delta, y, U^v, V)$) for denoting an absolutely continuous function specified in R_+ with values in X, equal y at t = 0, and in every half-open interval $t_i \leq t < t_{i+1}$, $i = 1, 2, \ldots$ of subdivision Δ is the solution of the differential equation

$$\begin{array}{ll} dx/dt &= Ax \; + \; f \; (U \; (t_i, \; x \; (t_i)), \quad V^u \; (t, \; U \; (t_i, \; x \; (t_i))) \\ (dx/dt &= Ax \; + \; f \; (U^o \; (t, \; V \; (t_i, \; x \; (t_i)), \; V \; (t_i, \; x \; (t_i)))) \end{array}$$

Let *m* denote the coordinate origin and $O(\varepsilon, x)$ denote the ε -neighborhood of point $x \in X$. We introduce sets B_1 and B_2 .

The set B_1 is the totality of all points $y \in X$ for each of which it is possible to select a strategy $U \in U$, instant $\Theta \ge 0$, and the mapping $\varepsilon \to \delta(\varepsilon)$ from R_+ into R_+ so that for any $\varepsilon > 0$ the subdivision Δ of diameter $d(\Delta) \leqslant \delta(\varepsilon)$ and function $V^u \in V^u$ at some $t \in [0, \Theta]$ the inclusion $x(t; \Delta, y, U, V^u) \in O(\varepsilon, m)$ is satisfied.

The set B_2 is the totality of all points $y \in X$ for each of which it is possible to

select a strategy $V \in \mathbf{V}$ and mapping of $\Theta \to \varepsilon$ (Θ) and $\Theta \to \delta$ (Θ) from R_+ into R_+ so that for any $\Theta > 0$ the subdivision Δ of diameter d (Δ) $\leqslant \delta$ (ε) and function $U^{\mathfrak{v}} \in \mathbf{U}^{\mathfrak{v}}$ the inclusion x ($t; \Delta, y, U^{\mathfrak{v}}, V$) $\in X \setminus O$ (ε, m) is satisfied for any $t \in [0, \Theta]$.

In other words the set B_1 (B_2) is the totality of all initial points y in plane X for each of which there exists a method of action of the first (second) player that makes it possible for him to bring system (1. 1) fairly close to the terminal point m (makes it possible to prevent system (1. 1) from reaching point m in any finite time) for any actions of the second (first) player.

Below we present the necessary and sufficient conditions for $B_1 \neq \{m\}$ $(B_2 = X \setminus \{m\})$.

2. We denote by Γ the set of all functions that associate to every vector u in P a vector in Q(u). Let

$$\begin{aligned} H_1(x, \gamma) &= \operatorname{co} \bigcup_{u \in P} \left[-Ax - f(u, \gamma(u)) \right], \quad x \in X, \quad \gamma \in \Gamma \\ H_2(x, v) &= \operatorname{co} \bigcup_{u \in P(v)} \left[-Ax - f(u, v) \right], \quad x \in X, \quad v \in Q \end{aligned}$$

where $\operatorname{co} D$ is the closed convex envelope of set D. For any arbitrary convex closed set $D \subset X$ we assume

$$\begin{array}{l} \Lambda \ (D) = \{x : x = \lambda z, \ z \in D, \ \lambda > 0\} \\ D^{\circ} = \overline{\Lambda} \ (D) \ \cap \ \{x : | \ x | = 1\} \end{array}$$

Assuming everywhere below $\xi = 1, 2$, we denote $W_{\xi} = \Gamma$ for $\xi = 1$ and $W_{\xi} = Q$ when $\xi = 2$. Let for any $x \in X$

$$K_{\xi}(x) = \bigcap_{w \in W_{\xi}} H_{\xi}^{\circ}(x, w)$$
(2.1)

 $L_{\mathfrak{F}}(x) = K_{\xi}(x)$, if $K_{\xi}(x) \neq \emptyset$ and consists of a single element; in the opposite case $L_{\xi}(x) = \emptyset$.

Assumption 1. If $K_{\xi}(m) \neq \emptyset$ and consists of one or two elements, then

$$\lim_{p,w} \max \left\{ \lambda \geqslant 0 : \lambda p \in H_{\xi}(m,w) \right\} > 0$$

where the exact lower bound is taken over all $p \in K_{\xi}(m), w \in W_{\xi}$.

Before formulating the second assumption, we introduce the following concepts. For $L_{\xi}(m) \neq \emptyset$ we set $F_{\xi} = \{x : x = \lambda L_{\xi}(m), \lambda \in R\}$ where R is a set of real numbers. When the straight line F_{ξ} is not invariant with respect to linear transformation defined by matrix A, then we assume that p_{ξ} is a unit vector that satisfies conditions $p_{\xi} L_{\xi}(m) = 0$ and $p_{\xi} A L_{\xi}(m) > 0$ where the prime indicates transposition. For any c > 0 we assume that

$$J_{\xi^{1,c}} = \{l \in X : l'p_{\xi} \ge 0, \quad c \mid l \mid \ge l'L_{\xi} (m) \ge 0\},\$$
$$J_{\xi^{2,c}} = -J_{\xi^{1,c}}$$

and for any $l \in X$

$$S_1(l) = \max_{u \in P} \min_{v \in Q(u)} l'f(u, v), \quad S_2(l) = \min_{v \in Q} \max_{u \in P(v)} l'f(u, v)$$

Assumption 2. If $L_{\xi}(m) \neq \emptyset$ and the straight line F_{ξ} are not invariant, there exists such $\alpha > 0$ for which function S_{ξ} is either convex in each of the sets $J_{\xi^{1,\alpha}}$ and $J_{\xi^{2,\alpha}}$ or is concave on each of these sets.

We set $E_1 = B_1$ and $E_2 = X \setminus B_2$.

Theorem. Let Assumptions 1 and 2 be satisfied. For $E_{\xi} \neq \{m\}$ it is necessary and sufficient if one of the following two conditions is satisfied:

1) $K_{\xi}(m) \neq \emptyset, L_{\xi}(m) = \emptyset$.

if

2) $L_{\xi}(m) \neq \emptyset$ and there exist a $\varkappa > 0$ such that $K_{\xi}(x) \neq \emptyset$ for any $x \in \Lambda(L_{\xi}(m)) \cap O(\varkappa, m)$.

Notes. 1°. An equivalent definition of the set $K_{\xi}(x)$, introduced by formula (2.1) can be derived as follows. Let $v_{\xi}(x)$ be the totality of all unit vectors l such that $S_{\xi}(l) + l Ax \leq 0$. Then

$$K_{\xi}(x) = \bigcap_{l \in v_{\xi}(x)} \{z : |z| = 1, l'z \ge 0\}$$

$$v_{\xi}(x) \neq \emptyset, \text{ and } K_{\xi}(x) = \{z : |z| = 1\} \text{ when } v_{\xi}(x) = \emptyset.$$

2°. If for any $l \in X$

$$S_{1}(l) = S_{2}(l) \qquad (2.2)$$

(i. e. the condition of saddle point is satisfied in the small game [1]), then $K_1(x) = K_2(x)$ for any $x \in X$. When (2.2) holds and the set $K_1(m) = K_2(m)$ consists of one or two elements, the fulfilment of Assumption 1 for $\xi = 1$ entails its fulfilment for $\xi = 2$ and vice versa.

3°. Assumption 1 is satisfied if, for instance,

$$f(u, v) = u - v, \quad G = P \times Q, \quad P \subset X, \quad Q \subset X$$
(2.3)

and the set co P is a polygon. Assumption 2 is satisfied if, for instance, at least one of sets co P or co Q is a polygon.

3. Let us outline the proof of the theorem. Let $K_{\xi}(x) \neq \emptyset$ for some $x \in X$ and $r_{\xi}(x)$ be some arbitrary vector in $K_{\xi}(x)$. We set

$$\eta (x, r_{\xi} (x)) = \inf_{w \in W_{\xi}} \max \{\lambda \ge 0: \lambda r_{\xi} (x) \in H_{\xi} (x, w)\}$$

We denote by Π that of the two closed half-planes determined by the straight line $\{x: Ax \in F_{\xi}\}$ whereinto is directed vector $L_{\xi}(m)$, when $L_{\xi}(m) \neq \emptyset$ and the straight line F_{ξ} is not invariant. We assume that II $(c) = O(c, m) \cap \Pi$, c > 0. The following lemma is valid.

Lemma 1. If $L_{\xi}(m) \neq \emptyset$, F_{ξ} not invariant, and the Assumptions 1 and 2 are satisfied, then, either a) there exist a $\varkappa > 0$ and function q_{ξ} that satisfies the Lipschitz condition and is determined in $O(\varkappa, m)$ with values in X° , such that $K_{\xi}(x) \neq \emptyset$ and $q_{\xi}(x) \in K_{\xi}(x)$ for any $x \in \Pi(\varkappa)$ and $\inf \{\eta(x, q_{\xi}(x)) : x \in \Pi(\varkappa)\}$ > 0, or b) there exist such $\varkappa > 0$ and functions h_{ξ} and ψ_{ξ} that satisfy the Lipschitz condition and are determined in $O(\varkappa, m)$ with values in $J_{\xi}^{\circ_{1},\alpha}$ and R_{+} , respectively, such that

$$\max_{w \in W_{\xi}} \min \{ (-1)^{i} h_{\xi}'(x) y; y \in H_{\xi}(x, w) \} \geqslant \psi_{\xi}(x)$$

$$i = 1, 2; x \in \Pi(x)$$

$$h_{\xi}(x) \neq p_{\xi}, \psi_{\xi}(x) > 0, x \in \Pi(x) \setminus F_{\xi}$$

$$h_{\xi}(x) = p_{\xi}, \psi_{\xi}(x) = 0, x \in \Pi(x) \cap F_{\xi}$$

Depending on the particular form of system (1, 1) and the fulfilment of Assumptions 1 and 2 only one of the following five cases is possible:

K_E (m) ≠ Ø, L_E (m) = Ø;
 L_E (m) ≠ Ø, F_E is invariant;
 L_E (m) ≠ Ø, F_E is not invariant and statement a) of Lemma 1 is satisfied;
 L_E (m) ≠ Ø, F_E is not invariant and statement b) of Lemma 1 is satisfied, and
 K_E (m) = Ø.

Lemma 2. If assumptions 1 and 2 are satisfied, then $E_{\xi} \neq \{m\}$ in cases 1-3, and $E_{\xi} = \{m\}$ in cases 4 and 5.

The theorem follows from Lemma 2 if one takes into consideration the following observations:

statement a) of Lemma 1 implies the fulfilment of condition 2) of the theorem;

if statement b) of Lemma 1 is valid condition 2) of the theorem is not satisfied;

condition 2) of the theorem is satisfied, when $L_{\xi}(m) \neq \emptyset$ and the straight line F_{ξ} is invariant.

4. Examples. Let function f and set G be of the form (2.3). If the sets P and Q are such as shown in Figs. 1 and 2, $K_1(m) = K_2(m) = \emptyset$, hence for any matrix A we have, according to the theorem, $B_1 = \{m\}, B_2 = X \setminus \{m\}$. Now, let the sets P and Q be such as shown in Fig. 3, then $L_1(m) = L_2(m) = \{l : l_1 = 1, l_2 = 0\}$. If $A = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix} \quad \left(A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}\right)$

then there exists such $\varkappa > 0$ that $K_1(x) = K_2(x) = \emptyset$ $(K_1(x) = K_2(x) \neq \emptyset)$ for any $x \in \{z : 0 < z_1 < \varkappa, z_2 = 0\}$. Hence $B_1 = \{m\}, B_2 = X \setminus \{m\} (B_1 \neq \{m\}, B_2 \neq X \setminus \{m\})$.

$$\begin{array}{c|c} x_2 \\ p \\ \hline \\ x_2 \\ \hline \\ p \\ \hline \\ a \\ \hline \\ Fig. 1 \end{array}$$

REFERENCES

- Krasovskii, N.N. and Subbotin, A.I., Positional Differential Games. Moscow, "Nauka", 1974.
- Pontriagin, L. S., Linear differential game of evasion. Tr. Matem. Inst. Akad. Nauk SSSR, Vol. 112, Moscow, "Nauka", 1971.
- Pshenichnyi, B.N. and Chikrii, A.A., The problem of encounter evasion in differential games. (English translation) Pergamon Press, Zh. Vychisl. Mat. mat. Fiz., Vol. 14, №6, 1974.
- Patsko, V.S., Point evasion conditions in a second-order differential game. PMM, Vol. 36, №6, 1972.

Translated by J.J. D.